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Abstract
We present a method for performing atomistic spin dynamic simulations. A comprehensive
summary of all pertinent details for performing the simulations such as equations of motions,
models for including temperature, methods of extracting data and numerical schemes for
performing the simulations is given. The method can be applied in a first-principles mode,
where all interatomic exchange is calculated self-consistently, or it can be applied with frozen
parameters estimated from experiments or calculated for a fixed spin-configuration. Areas of
potential application to different magnetic questions are also discussed. The method is finally
applied to one situation where the macrospin model breaks down; magnetic switching in ultra
strong magnetic fields.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the increasing interest in advanced magnetic materials
for data storage and processing there is an increasing need
for a detailed atomistic description of magnetic materials.
Methodological and computational schemes for performing
atomistic magnetization dynamics have been presented by
several groups in the past [1–3]. At this stage however,
there has not been many simulations on realistic systems in
the materials research domain. Part of the reason is the
computational complexity of these simulations. This limitation
is however gradually being overcome by the availability of
increasing computational power. At this stage approximate
simulations of realistic systems are already feasible and in
the future the increasing importance of atomistic modeling
of magnetization dynamics can be expected. With
recent developments in experimental techniques for studying
magnetization dynamics on short timescales and with recent
findings on ultrafast magnetization dynamics [4, 5], there
is also an increasing amount of experimental results on
microscopic magnetization dynamics.

The commonly used approach for studying magnetization
dynamics, micromagnetism, provides a framework for
understanding magnetization dynamics on length scales of
micrometers and has with increasing computational power
become a field of great technological importance. The
approach, however, suffers from a number of limitations. It

is based on the phenomenological Landau–Lifshitz–Gilbert
(LLG) equation where magnetism is treated as a continuum
vector field on a length scale of micrometers and where
the energy dissipation of the system is described in terms
of a single ad hoc damping parameter. This foundation
limits the applicability and accuracy of the approach, making
it inadequate for describing various modern experiments on
magnetization dynamics. Instead it would be desirable to have
an atomistic approach based on the quantum description of
solids, an approach which properly displays the connection
between the electronic structure of the material and the
magnetization dynamics. Such an atomistic approach would
be capable of giving a much more accurate description of
magnetization dynamics and would provide a framework for
including a detailed description of the different dissipation
processes involved in magnetization dynamics. It would
provide a way of calculating magnetization dynamics starting
from first-principles, enabling the study of dynamics of
materials with complex chemical composition and materials
with complex magnetic ordering such as anti-ferromagnets,
spin-spirals and spin glasses.

A formal platform with which to develop an ab initio
spin dynamics simulation method is naturally based on
density functional theory, since it is known to reproduce both
magnetic moments, as well as exchange interactions, with good
accuracy. In this paper we have indeed utilized the efficiency of
density functional theory in calculating interatomic exchange
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interactions. The method presented here is based on a Born–
Oppenheimer like approximation for the spin system, where
we consider the atomistic spins as being slow variables, and
the electronic motion as being very fast. With this adiabatic
approximation one can separate the spin system from the
electronic one, as shown by Antropov et al [6], and hence
solve the equations of motion for the two systems separately.
This is the approach we will adopt here but it is worth
mentioning that alternative computational schemes for spin
dynamics on an electronic level are the time-dependent spin
density functional theory (TD-SDFT) [7] or time-dependent
current density functional theory (TD-CDFT) [8]. These
approaches are promising but they are computationally much
too time consuming for simulating larger systems.

The scope of this paper is to give a detailed presentation
of a methodological and computational scheme for performing
spin dynamic simulations on an atomistic scale, where
most of the conceptual details were derived in [6]. The
approach is hence based on an atomic scale description of
the magnetization of a solid. Magnetic properties extracted
from such a description have long been limited to ground
state properties, as in density functional theory (DFT), or to
thermal equilibrium properties, as accessed by a combination
of DFT and Monte Carlo (MC) simulations. In section 2 the
adiabatic equations of motion for the atomic spins are derived
and here we also discuss magnetic relaxation. In section 3
we present a scheme for simulating finite temperatures in
spin dynamics. Section 4 presents methods of extracting
and comprehending results from magnetization dynamics
simulations, and section 5 discusses applications. Finally
in section 6, as a demonstration, the method is applied to
magnetic switching of bcc Fe in ultra strong switching fields.

2. Equations of motion

2.1. Slow variables

A detailed derivation of how the dynamics of fast variables
(electrons) and slow variables (atomic spins) are separated can,
as mentioned, be found in [6]. Here we give a short description
of the essential aspects of the dynamics of the atomic spins.

The equation of motion for the slow variables, or the
directions of the atomic spins, can be derived by evaluating the
commutator between the spin operator, Ŝ, and the Kohn–Sham
(KS) Hamiltonian (HKS) of density functional theory [9],

∂ Ŝ
∂ t

= 1

ih̄
[Ŝ,HKS], (1)

which results in

∂ Ŝ

∂ t
= −γ Ŝ × B + 1

ih̄
[Ŝ,Hnm], (2)

where Hnm is the spin-independent part of HKS. In the absence
of spin–orbit coupling, Ŝ commutes with all terms of Hnm

except for the kinetic term − h̄2

2m

∑N
i ∇2

ri
(see [10]). We define

the current operator as

ĵ ≡ h̄

i2m

N∑

i

∇iδ(r − ri ) + δ(r − ri )∇i , (3)

and the spin-current operator as

Ĵ ≡ σ̂ ⊗ ĵ, (4)

where the summation in equation (3) is performed over
electrons. Evaluating the last term in equation (2) using the
stated definitions results in,

1

ih̄

[
Ŝ,Hnm

]
= 1

ih̄

[

Ŝ,

(

−
N∑

i

h̄2∇2
ri

2m

)]

= ∇ · Ĵ, (5)

and the continuity equation for the spin magnetization within
the KS framework is obtained by inserting this result in

equation (2). By calculating the expectation value of dŜ
∂ t for

the KS ground state we obtain,

∂S
∂ t

(r, t) + ∇ · JKS(r, t) = −γ S(r, t) × B(r, t), (6)

where S is the spin moment. The second term on the left-hand
side is omitted for the applications considered in this paper.
However, for experiments where current induced effects are
important one must include this term. Among the effects that
arise from this term are fluctuations of the size of the atomic
spins. By using the AMA, integrating equation (6) over atom
i , we are left with a simple equation for the orientations of the
atomic spins,

∂Si

∂ t
(t) = −γ Si (t) × Bi , (7)

where i denotes atomic index and Bi the effective field which
the atomic spin, Si , experiences.

2.2. Parametrization

An accurate approach for performing spin dynamics and
for calculating effective fields acting on the atomic spins,
is to perform a constrained DFT calculation at each time
step using local constraining fields. This has been done
for systems consisting of a few atoms by Újfalussy et al
[11] where the spin dynamics of a finite Co chain along a
Pt(111) surface step edge was simulated. While accurate,
the approach is computationally fairly cumbersome and much
can be gained by working with a parametrization of the KS
Hamiltonian. Such an approach was suggested by Fähnle
et al [3] where a gradual trade off between the accuracy
and computational requirements is possible. By using a
spin-cluster expansion method the effective field including
exchange, magnetocrystalline anisotropy, dipolar and external
field contributions were parametrized. By increasing the
number of parameters in the parametrization, the accuracy was
increased toward the ab initio accuracy at the same time as the
computational requirements increase.

We adopt a similar approach, in the sense that the
energy of the system is parametrized and the dynamics
is simulated for the parametrized Hamiltonian. Here, we
present a general parametrization in terms of the atomic
moments, mi , instead of the atomic spins, Si . For 3d
systems, the atomic moment is dominated by the spin moment
contribution and the effect of spin–orbit coupling is small.
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For systems such as actinides, orbital moments are larger and
the total atomic moment must be considered in dynamical
simulations of the magnetization. In the KS Hamiltonian,
we neglected dipolar interactions and spin–orbit coupling.
Dipolar interactions are small and included separately in the
parametrized Hamiltonian. Spin–orbit coupling gives rise
to a magnetocrystalline anisotropy which also is included
separately in the generalized Hamiltonian. The effective field,
Bi , on each atom is calculated from

Bi = −∂H

∂mi
. (8)

The parametrized Hamiltonian is composed of the following
terms,

H = Hiex + Hma + Hdd + Hext, (9)

where for the first term, which represents interatomic exchange
interactions, we use the classical Heisenberg Hamiltonian,

Hiex = − 1
2

∑

i �= j

Ji j mi · m j , (10)

where i and j are atomic indices, mi the classical atomic
moment and Ji j the strength of the exchange interaction. The
second term in equation (9) represents the magnetocrystalline
anisotropy and can take several forms. For a uniaxial
anisotropy we have a dominant contribution of the form,

Hma = K
∑

i

(mi · eK )2, (11)

where eK is the direction of the anisotropy axis and K the
strength of the anisotropy field. The third term,

Hdd = − 1
2

∑

i �= j

Qμν

i j mμ

i mν
j , (12)

represents dipolar interactions. Here μ and ν are coordinate
indices and Qμν

i j is given by,

Qμν

i j = μ0

4π
(3Rμ

i j Rν
i j − δμν R2

i j)R−5
i j , (13)

where Ri j is the distance between atomic moments i and j .
Dipolar interactions are long range and important for the long
wavelength excitations. The interaction can be neglected in
studies of short wavelength excitations. For finite systems
dipolar interactions lead to a shape anisotropy. For a thin
film the shape anisotropy can be modeled by a term similar
to equation (11),

Hshape = Kshape(m̄ · eshape)
2, (14)

where eshape is the out-of-plane direction of the film, m̄ is
the average magnetic moment of the system and Kshape is the
strength of the shape anisotropy. The last term of equation (9),

Hext = −Bext ·
∑

i

mi , (15)

is the Zeeman term and describes the interaction of the
magnetic system with an external magnetic field.

In our approach we use the parametrized Hamiltonian,
equation (9), combined with equation (7) which describes
the time evolution of the magnetization for a system which
is dominated by the spin moment. Parameters for the
parametrized Hamiltonian are obtained by a mapping from a
DFT ground state calculation. The most widely used approach
is through the Liechtenstein–Katsnelson–Gubanov method
(LKGM) [12] which is based on the magnetic force theorem
where parameters are obtained from small angle perturbations
from the ground state. At low temperatures, where the
interatomic angles between the atomic spins are small, the
parameters can be considered accurate. For the paramagnetic
state one may instead extract Heisenberg exchange parameters
by means of the generalized perturbation method (GPM) [13]
for a disordered local moment (DLM) state treated within the
coherent potential approximation (CPA). This method provides
a more accurate description of the high temperature region.

2.3. Damping

When the atomic spins evolve from the dynamics of
equation (7), energy and angular momentum dissipates via
a range of mechanisms. The different mechanisms which
lie behind this damping have e.g. been studied in [14–23].
The effect of the different damping mechanisms is normally
included by adding a phenomenological term to equation (7),
which yields the Landau–Lifshitz–Gilbert (LLG) equation,

∂Si

∂ t
= −γ Si × Bi + α

m
Si × ∂Si

∂ t
, (16)

where α is the damping coefficient. In the rest of this paper we
chose to work with atomic moments, m, rather than atomic
spins, S. All formalisms are trivially preserved with this
choice. For numerical reasons we use the Landau–Lifshitz
form of damping term, and hence equation (16) is replaced by

∂mi

∂ t
= −γ mi × Bi − γ

α

m
[mi × [mi × Bi ]]. (17)

3. Finite temperature modeling

Most of the systems we are interested in simulating with
the method presented here can conceptually be understood in
terms of three thermodynamic subsystems; the spin system,
the electronic system and the lattice (figure 1). The different
reservoirs can be identified in measurements of specific heat.
Each of these subsystems can be seen as reservoirs for energy
and angular momentum.

A division of the magnetic solid as such, into three
thermodynamic reservoirs, is not free from complications,
especially the division of the electronic system and the
spin system which both are manifestations of the nature
of electrons. It is important to note that the elementary
excitations of the spin system carry an angular momentum
of h̄. Any transfer of energy to or from the spin system
must be accompanied by a transfer of angular momentum.
The necessity of angular momentum conservation is often a
bottleneck of the transfer of energy between the subsystems.
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Figure 1. The dynamic behavior of a magnetic solid can be
understood in terms of three thermodynamic reservoirs and
interactions that exchange energy between the reservoirs. In the
figure we included approximate relaxation times within the reservoirs
and between the reservoirs.

The processes that carry energy and angular momentum
between the subsystems are defined by the way the division
is made. The total Hamiltonian for the magnetic solid carries
terms that mix the subsystems and these are the processes
which are responsible for the energy and angular momentum
exchange between the subsystems. Relaxation rates between
the reservoirs are associated with the characteristic energies
of the interactions that mediate the coupling between the
reservoirs [24]. These timescales have been measured in
experiments. The electron–lattice relaxation time, τel, is of the
order of picoseconds (ps). The spin–lattice relaxation time,
τsl, is of the order of 100 ps and the spin–electron relaxation
time, τes, has been found in recent pump–probe experiments
to be of the order of 100 fs [4, 5]. Relaxation within
the spin system (τs) and within the lattice (τl) are expected
to take place on timescales of the order of picoseconds
whereas the electron–electron relaxation (τe) takes place on a
subpicosecond timescale.

In order to describe atomistic spin dynamics at finite
temperatures in simulations, the spin system must be coupled
to a thermal reservoir in such a way that energy may be
transferred into and out of the system. We will start by showing
how a single thermal reservoir can be coupled to the spin
system and later generalize the discussion to several thermal
reservoirs.

3.1. One thermal reservoir

For a discussion on stochastic and deterministic methods of
including temperature, see [6]. One way of introducing
a coupling to a thermal reservoir, which is adopted here,
is through Langevin dynamics (LD), which is standard in
finite temperature micromagnetic simulations [25–28]. In our
approach, excitations are generated by performing classical
rotations of single atomic spins in such a way that the energies
of the atomic spins satisfy Boltzmann statistics. As a practical
method, either Monte Carlo (MC) or LD methods may be used
to obtain a finite temperature equilibrium configuration.

Thermal excitations are generated by adding a stochastic
field, bi , to the effective field, Bi , on each atom, i . The random

Figure 2. Comparison of equilibrium magnetization versus
temperature for a periodic 20 × 20 × 20 bcc Fe system for
SD and MC.

field is assumed to be a Gaussian stochastic process with the
following statistical properties,

〈bi,μ(t)〉 = 0, 〈bi,μ(t)b j,ν(s)〉 = 2Dδμνδi jδ(t − s),
(18)

where μ and ν are the Cartesian coordinates of the field and
where D is the strength of the thermal fluctuations. The
Kronecker deltas in equation (18) state that the different
Cartesian components of bi are unrelated and that the random
fields acting on different magnetic moments i are independent.
The Dirac delta states that the autocorrelation time of bi is
much smaller than the rotational response of the system.

As a technical note we mention that we have chosen to add
the stochastic field to the effective field in both the precessional
term and the damping term, resulting in the following equation:

∂mi

∂ t
= −γ [mi ×[Bi +bi(t)]]−γ

α

m
[mi ×[mi ×[Bi +bi (t)]]].

(19)
Equation (19) is a stochastic differential equation (SDE) as

opposed to regular ordinary differential equations (ODE) and
requires an interpretation rule [29]. In the appendix we present
a derivation of the amplitude of the stochastic field, D, required
to achieve thermodynamic consistency.

At equilibrium, MC and spin dynamics (SD) give identical
results for a number of properties. MC can actually be used as
a way of benchmarking SD simulations. In figure 2 we plot
the saturation magnetization for MC and SD for bcc Fe versus
temperature. Simulations are performed on a 20 × 20 × 20
bcc system using four coordination shells in the Heisenberg
term. The Heisenberg exchange parameters were calculated
from first-principles theory and MC and SD are seen to give
identical results. In figure 3 we plot the energy distribution of
the moments for MC and SD simulations with two different
damping parameters. These distributions coincide perfectly
with the Boltzmann distribution.

Differences between SD and MC are more subtle and
appear first in comparisons of spin-correlation. Figures 4–6
illustrate the dynamic spin-correlation function S(q, ω), which
is described below in section 4.3, calculated for equilibrium
states generated by MC and SD simulations with different
damping parameters. For Fe realistic damping parameters are
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Figure 3. Histogram of the energy distribution of the atomic spins of
a 20 × 20 × 20 bcc Fe system within MC and SD simulations at
100 K. The SD simulation is done for two different damping
parameters and data is obtained at equilibrium.

Figure 4. The first three excitation peaks in S(q, ω) for a periodic,
20 × 20 × 20 bcc, Fe system at 100 K. The sizes of the peaks in the
SD simulation vary depending on the damping parameter.

of the order 0.005–0.1 [30]. The comparisons shows that
the MC generated equilibrium has a larger amount of high
energy/large momentum excitations and a lower amount of low
energy excitations than the SD system with damping α = 0.01.
By increasing the damping parameter in SD the excitation
content is modified and for large enough damping parameter
the number of high energy excitations exceeds that found for
the MC equilibrium.

3.2. Several thermal reservoirs

We have now described how the magnetic system can be
connected to one thermal reservoir. In order to properly
represent the spin dynamics of a system, where the system
can be decoupled into three thermal reservoirs as described in
section 3, we present a method of connecting the spin system
to several thermodynamic reservoirs. The relaxation time
between the electronic system and the lattice is of the order
of picoseconds. Hence, a distinction between the electronic
reservoir and the lattice is only necessary when studying
dynamics with resolution higher than picoseconds. To describe
the interaction between the electronic system, the lattice and
the spin system, it is natural to propose a two-damping model.

Figure 5. Same as in figure 4 but in the high energy region.
Comparison of MC and SD with α = 0.1.

Figure 6. Same as in figure 4 but in the high energy region.
Comparison of MC and SD with α = 1.0.

The intent is to capture the interaction between the spin system
and the lattice with one damping parameter and to capture the
interaction between the spin system and the electrons with a
second damping parameter. A third parameter is also needed
and describes the transfer of energy between the electrons
and the lattice. Until there is more knowledge on how these
parameters can be calculated, we use parameters obtained by
fitting to pump probe experiments which display all these
processes.

We thus proceed by introducing two Gilbert damping
terms which are added to the equation of motion for the atomic
moments,

∂Si

∂ t
= −γ Si × [Bi + bi (t)]
− γ

αe

ms
Si × [Si × [Bi + bi (t)]]

− γ
αl

ms
Si × [Si × [Bi + bi (t)]] (20)

where αe and αl are the damping parameters which correspond
to an energy transfer from the spin system to the electrons
and to the lattice, respectively. Equation (20) describes
how energy dissipates from the system through two channels.
The temperatures of the reservoirs are given by Te and Tl.
In equilibrium the temperature of all three thermodynamic
reservoirs are the same, i.e. Te = Tl = Ts. In our treatment
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Figure 7. Simulation of a pump probe experiment. Simulations were
done on a 10 × 10 × 10 bcc Fe system. The lower panel shows the
assumed electron and lattice temperatures. The lattice temperature is
constant at 300 K. The electronic temperature decays from an initial
500 K to 300 K with a decay time of 150 fs. The upper panel shows
the normalized spin moment of the system.

the amplitude of the thermal fluctuations bi is given by,

DLL(G) = DLL(G),e + DLL(G),l, (21)

where

DLLG,x = 1

1 + (αe + αl)2

kBTx

γ ms
αx , (22)

or

DLL,x = kBTx

γ ms
αx , (23)

where x = e, l corresponds to electron or lattice effects. These
amplitudes correspond to the equilibrium thermal fluctuations.
Assuming a constant flux of energy from the reservoirs to
the spin system, we use these amplitudes in our dynamic
simulations. For practical simulations assumptions need to be
made on the initial temperatures, Te and Tl, and the relaxation
between the electrons and the lattice. Typical pump–probe
experiments as reported in [31] can be simulated by assuming
that the lattice is an infinitely large thermal reservoir with
constant temperature Tl. Further, we assume that the electron
reservoir is a thermal reservoir, much smaller than the lattice
but much larger than the spin system, with a temperature
that evolves with time as Te(t) = Tl + Te,init exp(−t/τel)

and where Te,init is the initial temperature. As an application
of our two-damping model we address recent pump probe
experiments [31], where the magnetization dynamics following
optical excitation of a Ni film have been interpreted in terms
of the three thermal bath model. We consider a test system
of bcc Fe with four coordination shells, as described above,
and are able to reproduce the trends found in experiments.
Our simulated magnetization is shown in figure 7. In the top
graph it is seen that the magnetization initially decreases and
after some time (∼0.5 ps) it stabilizes at a value ∼70% of the
initial value. This behavior is in qualitative agreement with the
measured data in [31].

4. Extracting information

A challenge in practical simulations of magnetization
dynamics is extracting, visualizing and comprehending results.

Figure 8. The trajectory of an atomic spin for a duration of 100 fs is
shown. Simulations are performed on a 10 × 10 × 10 bcc Fe system.
On the left-hand side the trajectory is shown for one atomic spin in a
non-equilibrium system at 0 K where the atomic spin directions are
completely randomly distributed. On the right-hand side we show the
trajectory of an atomic spin at a 300 K equilibrium. Simulations are
performed for different sizes of times steps in the numerical method:
10−18, 10−17 and 10−16.

A simulation of the time development of the magnetic moment,
mi , of N atoms over M time steps, generates data of the form
m j

i (tk), where j = x, y, z, i = [1, N] and tk = [1, tM ]. For a
typical simulation this amounts to an unmanageable amount
of data which is difficult to store. In order to analyze and
comprehend the meaning of the data it must be compressed into
variables that capture the state and evolution of the system. By
doing this on the fly during the simulation, computational time
and storage requirements are greatly saved. Below we analyze,
in this way, trajectories of the atomic spins, average moment,
spin-correlations and the energy distributions in simulations of
spin dynamics.

4.1. Trajectories

In figure 8 we show the trajectories of individual atomic
moments. The simulations are performed on a 10 × 10 × 10
system of bcc Fe with periodic boundary conditions. The
duration of all simulations is 100 fs and the damping is α =
0.1. On the left-hand side we present a simulation at 0 K
where the initial spin distribution is random. Trajectories are
presented for three different step sizes in the numerical scheme
where Heun’s scheme was used. With this scheme and for this
particular simulation, step sizes as small as 1–10 attoseconds
are required to produce accurate trajectories on a timescale of
100 fs. On the right-hand side we present the trajectory of one
atomic spin of a system in a 300 K equilibrium. We present
simulations for three different step sizes. At finite temperatures
individual trajectories do not carry much information because
of thermal fluctuations. By viewing snapshots or sequences of
snapshots of the spin-configuration over the entire system or
parts of the system, valuable information on correlations and
domain formation can be visualized [32].

4.2. Average magnetic moment

Averages are fundamental quantities of a magnetic system.
With the data from a spin dynamic simulation averaging
can be performed over space, time, different random number

6
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Figure 9. Relaxation in an easy-axis anisotropy. The upper panel
shows the relaxation of a ferromagnet in an easy-axis uniaxial
anisotropy and the second panel shows the relaxation of an
anti-ferromagnet in an easy-axis uniaxial anisotropy. For the
ferromagnet we plot the evolution of the average magnetization and
for the anti-ferromagnet we plot the evolution of the average
magnetization of one sublattice.

sequences in the Langevin equations or over different initial
states. Thermal (ensemble) averages are often desired and can
be calculated in different ways depending on the system and
process.

Space averaging over all atoms in the system gives the
average magnetization. If all atoms are equivalent, such an
average may be taken as a thermal average. Space averaging
may also be performed separately over different sublattices or
separately over sets of equivalent atoms in order to understand
the dynamical behavior of certain parts of a system. This is
useful when studying anti-ferromagnets (AFM) or alloys. In
figure 9 we show the relaxation of a ferromagnet and an anti-
ferromagnet in an uniaxial easy-axis anisotropy, following a
sudden 45◦ change with respect to the anisotropy axis. For
the ferromagnet (upper panel) we show the evolution of the
average magnetization whereas for the anti-ferromagnet (lower
panel) we show the evolution of the average magnetization of
a sublattice. In order to understand the switching behavior
of an anti-ferromagnet the behavior of each sublattice and
their mutual interaction plays an important role. For future
large scale simulations where the spatial variation of the
magnetization over larger length scales is of interest, space
averaging may be performed over several limited spatial
regions of the system, producing a more coarse grained picture
of the spin dynamics of the system. Figure 9 also shows that
the switching of the AFM is faster than for the FM.

Time averaging is useful for smearing out random
fluctuations. In equilibrium, time averaging may be performed
over unlimited time. When studying dynamic processes,
time averaging must be performed over sufficiently short
time intervals in comparison to the timescale of the dynamic
process. For systems such as spin glasses, where each
atomic moment is unique, thermal averaging may be done
by performing an averaging over time. In particular for
spin glasses, which are often out of equilibrium, such a
time averaging must be performed over sufficiently short time

intervals. For systems with bond- or site-disorder, averaging
can be done over different configurations of exchange
parameters, respectively magnetic atoms, in the lattice. Dilute
magnetic semiconductors are a manifestation of site-disordered
systems. Among different classes of spin glasses there are
systems possessing either bond- or site-disorder. Often a
combination of space and time averaging is useful. In space
averaging the number of averaging terms is limited by the
finite size of the system. Finite size effects themselves have
effects on the system which are interesting to study. For small
systems, space averaging may become insufficient and can be
compensated by time averaging.

Another type of averaging is averaging over identical
simulations but with different random number sequences in the
Langevin equations. For equilibrium simulations this is similar
to time averaging. This type of averaging is however very time
consuming since the same simulation must be repeated several
times. The technique is best used in combination with space
and time averaging.

For some specific simulations one might also consider
sampling over different initial configurations. The different
but equivalent initial configurations could be generated with
Monte Carlo or with spin dynamics using different initial
configurations.

4.3. Correlations between magnetic moments

In addition to the trajectories or the absolute directions of
atomic moments, correlations or relative directions between
atomic moments provide fundamental information on the
system (see [33–35]). The correlation function can be defined
as

Ck(r − r′, t) = 〈mk
r(t)m

k
r′ (0)〉 − 〈mk

r(t)〉〈mk
r′ (0)〉, (24)

where 〈· · ·〉 denotes an ensemble average and may be
performed according to the previous section. The first term
on the right-hand side is the overlap and contains information
on the magnetic order of the system.

In order to evaluate the spin wave excitation content of a
system one may calculate S(q, ω) by performing a space and
time Fourier transform of the spin–spin-correlation,

Sk(q, ω) = 1

N
√

2π

∑

r,r′
eiq·(r−r′)

∫ +∞

−∞
eiωt Ck(r − r′, t) dt,

(25)
where N is the number of terms in the summation. Figures 4–
6 show S(q, ω) for an equilibrium system. For dynamical
processes it is interesting to study how the spin wave content
changes with time. Such a calculation is performed in section 6
on bcc Fe in an ultra strong switching field. For this process the
timescale of the switching process was too fast to allow for an
accurate S(q, ω) calculation at different points in time of the
dynamic process. The calculation was instead performed by
taking snapshots of the configuration of the system at different
points in time during the dynamic process. Each snap-shot then
serves as an initial state in a zero damping simulation where the
dynamic spin-correlation is calculated. This procedure works
as long as the system does not exhibit any strong spin wave
instabilities, which may change the spin wave content at zero
damping.

7
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Figure 10. Snapshot of a simulation of Mn doped GaAs
(5% concentration). Only Mn atoms are shown. The arrows
indicate the size and direction of the Mn atomic spins.

4.4. Energy distributions

In equilibrium the energy distribution of the spin moments
follows a Boltzmann distribution, as shown above. The energy
of spin i is given by

Ei = −mi · Bi + |mi ||Bi |. (26)

In this expression parallel coupling between the moment and
local effective field is set to zero energy. Figure 3 shows
a comparison between MC and SD for different values of
the damping parameter. During dynamical processes the
distribution changes. In analogy with the spin wave content
one may calculate the change in the energy distribution at
different points in time during a dynamic process.

4.5. Direct visualization

Perhaps the most natural illustration of a spin dynamics
simulation is to present a real time visualization of how the
spins relax during the simulation. In figure 10 we present an
example of this where a snapshot of the spin-configuration of
Mn doped GaAs, a diluted magnetic semiconductor, is shown.
Only the magnetic Mn atoms are shown, the nonmagnetic
Ga and As atoms are not shown. The data is from a simulation
where the Mn concentration was 5%. The temperature of the
simulation is T = 100 K, which is below the ferromagnetic
ordering temperature. The snapshot illustrates the extent of
correlation on short distances, whereas the value of the global
magnetization is better obtained as a thermal average.

5. Applications

An atomistic approach to spin dynamics is necessary for
various classes of problems. One class of problems are
systems at extreme conditions, such as extreme external
magnetic fields, where high energy short wavelength magnons
are excited. This case will be treated in the following
section. Another class of problems are systems with complex
magnetic ordering on an atomic scale which cannot be treated
properly within micromagnetism, such as dilute magnetic

systems [36, 37], anti-ferromagnets and spin-spirals. A third
class of problems concern systems with complex chemical
ordering or nano-structured materials [38, 39]. In the following
sections we present simulations of bcc Fe in large magnetic
switching fields. We also illustrate different techniques for
visualizing a dynamic magnetization process.

6. Magnetic switching

LLG theory relies on a macrospin approximation where
the magnitude of the macrospin is assumed constant. It
has previously been shown that for large anisotropies, the
macrospin picture breaks down due to the appearance of
spin wave instabilities which alter the size of the macrospin.
Cases where the macrospin approach breaks down may present
interesting areas for the application of atomistic spin dynamics.
In this section we address magnetic switching in an external
field. We show that the macrospin approximation remains
valid up to very high switching field strengths. However, at
extremely high switching fields, over 100 T, the approximation
finally breaks down. Here, we use this limit to illustrate the
use of the atomistic spin dynamics method. By using bulk
Fe as a model system we describe the switching process from
atomistic considerations. Furthermore we determine the size
of the external field when LLG theory breaks down.

Magnetic switching is the process of moving a system
from one stable magnetic configuration to another and is
fundamental for any system where a magnetic state is used
for storing and retrieving information. The switching process
involves an excitation of the system followed by a relaxation
into a new stable configuration. In this section we address
magnetic switching induced by an external field, in presence of
which energy is transferred into the magnetic system through
the Zeeman term. After this excitation, the system relaxes into
a new stable configuration.

Recent field pulse magnetic switching experiments
explore magnetic switching in field pulses of the order of
35 T [24], a factor of 1000 higher than field pulses in
conventional switching experiments. As an external field is
applied to the system, the spin wave spectrum of the system
is shifted by a Zeeman term which is either positive or
negative depending on if the external field is applied parallel
or anti-parallel with the magnetization. Hence, the external
field yields an excitation directly into the spin system. The
system is then driven to equilibrium with the other thermal
reservoirs by different damping processes. In this process both
the orientation and magnitude of the macrospin change in a
process which will be the focus of this section. For weak
switching fields, the change in magnitude of the macrospin is
negligible and the results approach the LLG theory. For large
fields (100 T) comparable to the exchange field (1000 T), the
change in magnitude is significant and an atomistic approach
is necessary to describe the process.

At zero temperature our atomistic model coincides with
the LLG picture since the system lacks high energy thermal
excitations. At finite temperatures the system contains these
high energy thermal excitations which alter the details of the
switching model. Let us now venture to an atomistic picture

8
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Figure 11. Excitation content of bcc Fe in a 300 K equilibrium.

of the field induced switching process at finite temperatures.
Since the main purpose is a qualitative description of
the switching process, the atomistic simulations are again
performed on bcc Fe using four coordination shells in the
Heisenberg Hamiltonian. Simulations are performed on a
system of 20 × 20 × 20 bcc cells.

Consider the system in equilibrium at 300 K. Figure 11
shows the calculated S(q, ω) of the equilibrium state, which
gives an image of the excitations in the system. Now consider
what happens when a constant magnetic field of 1000 T is
applied. We use an exaggerated large switching field in order
to demonstrate the effect. As a first case consider the external
field being applied parallel to the magnetization. The external
field shifts the positions of the excitations to higher energies.
The process is illustrated in figure 12 for the q = 0.2ez(2π/a)

excitation peak. The figure presents the original equilibrium
peak position for t < 0. At t = 0 the 1000 T field is
applied to the system resulting in a sudden shift of the peak.
The external field adds to the exchange field which in turns
increases the precessional torque on the atomic moments. This
increases the frequency of precession and thereby the energy
of the excitation. The system is now in a non-equilibrium state
and relaxes with time through various dissipation processes to
a new equilibrium. The damping torque brings the system
to a new equilibrium with a larger saturation magnetization
than the original equilibrium. One way to see this is that
the external field increases the damping torque which in
turn reduces the spread of the atomic moments and thereby
increases the saturation magnetization. One can also regard
the external field as a Zeeman contribution to the energy of
the excitations. The damping term provides a path for energy
and angular momentum to leave the system. Since the energy
of the excitations was increased by the Zeeman contribution,
excitations need to be removed from the system to restore the
300 K equilibrium. Figure 12 shows how the excitation peak
shrinks significantly with time, leaving a barely visible peak,
also shown in the inset. We see that in an atomistic picture, the
magnitude of the macrospin changes in the applied magnetic
field. This change is neglected in LLG theory where the system
remains unchanged as a magnetic field is applied parallel to the
magnetization.

As a second case, let us now turn to a slightly more
complex scenario—application of a 1000 T external field at
an angle of 135◦ with respect to the magnetization. This

Figure 12. The position and magnitude of the q = 0.2ez(2π/a) peak
as a 1000 T magnetic field is applied along the magnetization axis,
i.e. z-axis, at t = 0. The figure shows the original peak at t < 0, the
peak at t = 0 when the external field is applied and the final peak
(100 fs). The inset shows the final peak at a larger scale.

Figure 13. Magnetic switching process in a 1000 T constant external
field applied 135◦ with respect to the magnetization at 300 K. The
Cartesian components and the magnitude of the normalized (0 K)
magnetic moment are shown.

scenario eventually leads to a switching of the direction of the
macrospin. It is interesting, however, to consider the path that
the system takes to reach equilibrium in an atomistic picture.
The z-axis is placed parallel with the external field and the
initial magnetization lies along the 1√

2
(ey − ez) direction. The

switching processes for 300 and 0 K are illustrated in figures 13
and 14, respectively. For the 300 K case, there is a small
reduction in the magnitude of the average magnetization during
the switching process. We also see an oscillation of the x- and
y-components of the macrospin, signaling the precession of
the magnetization. Let us now analyze the switching process
in more detail. As the field is applied to the system there
is a splitting in the excitation spectrum. When the external
field was applied parallel to the magnetization there was only
a positive Zeeman contribution to the excitations. For an anti-
parallel field we would find a negative Zeeman contribution
whereas for a field applied in any other direction there is a
negatively shifted peak, a positively shifted peak and a peak
at the original position. This splitting is illustrated in figure 15
for the q = 0.5ez(2π/a) peak. In this plot the original peak
is at ∼150 meV. The magnitude of the peaks with respect to
each other depends only on the angle of the magnetization
with respect to the external field. Since the angle is 135◦
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Figure 14. Magnetic switching process in a 1000 T constant external
field applied 135◦ with respect to the magnetization at 0 K. The
Cartesian components and the magnitude of the normalized (0 K)
magnetic moment are shown.

Figure 15. The splitting of the q = 0.5ez(2π/a) excitation peak as a
1000 T external field is applied at an angle of 135◦ with respect to the
magnetization.

in figure 15, it is the peak with the negative shift which
dominates. The momentum dependence of the splitting of the
excitation spectrum is illustrated in figure 16. Note that this
splitting is a feature of the non-equilibrium system. The central
spectrum corresponds to the equilibrium excitation spectrum.
Application of the 1000 T field has two main consequences.
First, it excites the uniform motion of the magnetization or
the average magnetization of the system. Secondly, within
an atomistic model, it also splits the excitation peaks of
the non-uniform magnons. Since the initial angle between
magnetization and external field is 135◦, the lower branch
dominates. This branch is lower in energy and in this instance
energy starts being transferred from the thermal reservoir to
the spin system. The process is illustrated in figure 17 for the
excitation peak q = 0.5ez(2π/a). The transfer of energy from
the thermodynamic reservoir to the magnetic system leads to
an increasing peak size. This initial energy transfer to the
magnetic system leads to a reduction of the size of the average
magnetization. However as the switching process continues the
orientation of the average moment changes, reducing the angle
between magnetization and the external field. This changes
the relative strengths of the three peaks in the split. As the
angle is reduced below 90◦ the positive Zeeman peak becomes

Figure 16. Splitting of the excitation spectrum during the relaxation
of the magnetic system in a 1000 T external field.

Figure 17. Evolution of the q = 0.5ez(2π/a) excitation peak during
the switching process. At t < 0, the peak is in its equilibrium
position with its equilibrium magnitude. At t = 0, a 1000 T field is
applied at an angle of 135◦ with respect to the magnetization. The
peak is split in three. The negative shift is dominant in magnitude
and the remaining two peaks are too small to be visible. Transfer of
energy to the magnetic system leads to an increase in the peak size.
As the switching proceeds the relative weight of the peaks change
leading to a larger weight on the positively shifted peak. At this
point, the energy transfer is reversed and energy is transferred out of
the system, leading to a shrinking of all peaks. At the new
equilibrium, the only peak remaining is the positively shifted peak.
The magnitude of the peak is reduced compared to the original
equilibrium peak.

largest implying an average positive shift of the excitation.
This reverses the energy transfer between the magnetic system
and the thermal reservoir. Energy is now being transported
out of the magnetic system leading to reduced peak sizes and
an increased saturation magnetization. Within the atomistic
model there are changes in the magnitude of the macrospin
during the switching process. This, however, does not affect
the precessional frequency of the macromoment which is only
dependent on the size of the external field.

If the initial angle between the external field and the
magnetization is increased toward anti-parallel alignment, the
effect of shrinking of the magnetization during the switching
process is enhanced. This is illustrated in figure 18 where a
1000 T anti-parallel field is applied to the magnetization where
the shrinking is total and accounts for the whole switching
process. Note that at a certain point in the process the size of
the macrospin (sum of all atomic spins) is zero, after which it
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Figure 18. Magnetic switching process in a 1000 T constant external
field applied anti-parallel with respect to the magnetization at 300 K.

increases back to a saturation value again. For weaker external
fields the effect is reduced. This is illustrated in figure 19
where a 100 T external field is applied anti-parallel to the
magnetization and although the size of the applied field is much
smaller, the magnitude of the magnetization is still heavily
effected by the external field.

To summarize this section, by simulations of magnetiza-
tion dynamics of atomic resolution, we have explored magnetic
switching in the limit of large external fields. A significant dif-
ference from LLG theory is seen for large fields. The results
may aid in understanding ultrafast switching experiments with
ultra large field pulses.

7. Conclusions

A full account of the details of an atomic spin dynamics
method has been given. A comprehensive description
of all pertinent details for performing spin dynamics
simulations, such as equations of motions, models for
including temperature, damping mechanisms, methods of
extracting data and numerical schemes for performing the
simulations, has been presented. Various ways to analyze
spin dynamics simulations have been presented including spin-
correlations. The method developed can be applied in a first-
principles mode, where all interatomic exchange is calculated
self-consistently, or it can be applied with frozen parameters
estimated from experiments or calculated for a fixed spin-
configuration.

The method has been applied to several systems,
with interatomic exchange calculated from first-principles,
primarily for bcc Fe from a frozen spin-configuration. Various
switching phenomena have been studied, such as the dynamics
of a spin system when the easy-axis rapidly changes direction.
Furthermore, we have simulated the spin dynamics of a system
with a large applied field parallel, anti-parallel and at an
angle to the macrospin (the sum of all atomic spins). In this
particular system we show that the macrospin model breaks
down. This happens when the applied field is of a similar
size to the interatomic exchange. An experimental realization
of this is possibly best obtained for nano-structured magnetic
multilayers, since the interatomic exchange interaction (which
in many systems influences the magnetic properties heavily) is

Figure 19. Magnetic switching process in a 100 T constant external
field applied anti-parallel with respect to the magnetization at 300 K.

typically of the same size as magnetic fields available in the
laboratory.
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Appendix. Langevin spin dynamics

The Fokker–Planck equation describes the time evolution of a
non-equilibrium probability distribution. The Fokker–Planck
equation corresponding to the SLL and the SLLG has been
derived [40].

The general form of the Langevin equations can be written
as

dy

dt
= Ai(y, t) +

∑

k

Bik(y, t)Lk(t), (A.1)

where

〈Lk(t)〉 = 0, 〈Lk(t)Ll(s)〉 = 2Dδklδ(t − s). (A.2)

The SLLG equation can be written in the general form of a
Langevin-equation by identifying the coefficients

Ai = γ
[
m × Beff − α

m
m × (m × Beff)

]

i
, (A.3)

Bik = γ

[
∑

j

εi jkm j + α

m
(m2δik − mi mk)

]

. (A.4)

The time evolution of the general form, using Stratanovich
calculus is given by

∂ P

∂ t
= −

∑

i

∂

∂yi

[(

Ai + D
∑

jk

B jk
∂ Bik

∂y j

)

P

]

+
∑

i j

∂2

∂yi∂y j

[(

D
∑

k

Bik B jk

)

P

]

(A.5)
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For the SLLG, we then arrive at the following Fokker–Plank
equation for the time evolution of the probability distribution,
P(m), of the atomic moments,

∂ P

∂ t
= − ∂

∂m

{[

γ m × Beff − γ
α

m
m × (m × Beff)

+ 1

2τ
m ×

(

m × ∂

∂m

)]

P

}

, (A.6)

where we have defined τ as,

1

τ
= 2Dγ 2(1 + α2). (A.7)

The SLL equation yields the identical equation as equa-
tion (A.6), but with

1

τ
= 2Dγ 2. (A.8)

The Fokker–Planck equation associated with the SLLG or
SLL equations must satisfy the correct thermal equilibrium
properties. In thermal equilibrium P(m) must have the form
of the Boltzmann distribution,

P0(m) ∝ exp[−βH (m)]. (A.9)

This condition on the Fokker–Planck equation is not consistent
with Îto calculus. For Stratanovich calculus, we can find a
condition on τ that makes the equations fulfill the equilibrium
requirement. First note that

Beff = −∂H

∂m
. (A.10)

Using equation (A.9) we can write

∂ P0

∂m
= βBeff P0. (A.11)

Hence, the first term of equation (A.6),

∂

∂m
(γ m × Beff)P0 (A.12)

vanishes and the remainder can be written as
∂ P

∂ t
= − ∂

∂m

{[

− γ
α

m
m × (m × Beff)

+ β

2τN
m × (m × Beff)

]

P

}

. (A.13)

From this we see that a requirement for a stationary solution,
or ∂ P/∂ t = 0, is that γα/m = β/2τN . Hence, resulting in

τN = 1

α

m

2γ kBT
. (A.14)

In equations (A.8) and (A.7) we see that the temperature
determines the amplitude of the random field, bi , and this is
how temperature enters our simulations. The amplitudes are
finally given by

DL LG = α

1 + α2

kBT

γ m
, (A.15)

and

DL L = α
kBT

γ m
. (A.16)
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